
Robust 3D Hand Tracking for Human Computer Interaction

Victor Adrian Prisacariu
Department of Engineering Science

University of Oxford
victor@robots.ox.ac.uk

Ian Reid
Department of Engineering Science

University of Oxford
ian@robots.ox.ac.uk

Abstract— We propose a system for human computer interac-
tion via 3D hand movements, based on a combination of visual
tracking and a cheap, off-the-shelf, accelerometer. We use a
3D model and region based tracker, resulting in robustness
to variations in illumination, motion blur and occlusions. At
the same time the accelerometer allows us to deal with the
multimodality in the silhouette to pose function. We synchronise
the accelerometer and tracker online, by casting the calibration
problem as a maximum covariance problem, which we then
solve probabilistically. We show the effectiveness of our solution
with multiple real-world tests and demonstration scenarios.

I. INTRODUCTION

With the advent of processing power and the internet, the
computer has become a gaming and media hub and part
of the centre of our social life. Still, interaction with it is
very limited to mouse and keyboard. This paper describes
a natural and intuitive way of interacting with a virtual
environment, by employing a vision and inertial sensor-based
system, to recover the 3D non-articulated pose of a human
hand in real time, while still creating a cost effective system.

Fast and reliable hand tracking has usually been achieved
using glove-based approaches. For example, the ShapeHand
data glove [8] uses accelerometers, gyroscopes and flex
sensors, while in [15] the authors use a specially coloured
glove (but no sensors) to obtain the full 3D articulated
pose of a hand. Both these systems show very good results.
However the ShapeHand data glove is both intrusive and
expensive, and the authors in [15] limit themselves to clean,
clutter-free environments.

Our method combines a vision based 3D tracker, similar
to the one presented in [11], with a single off-the-shelf
accelerometer. This gives it the following significant advan-
tages over previous hand tracking work: (i) it works in real
time and in real-world environments (cluttered and with large
amounts of motion blur and occlusions) and (ii) it is much
less intrusive when compared to glove-based approaches.

Vision based 3D hand tracking can be split into model-
based and appearance-based tracking [10]. A model-based
technique has a number of important elements: a 3D model,
a set of image features, an error function and a non-linear
optimisation algorithm. At every frame the set of features is
extracted from the image and an error function is minimised.
This energy function relates the pose of the 3D model to the
features extracted from the image. The features may be sim-
ple (edges, points) or complex (3D depth information). Most
often edges and colour are combined to form a silhouette.
The 3D model may be anything between a coarse geometric
model and a detailed 3D reconstruction (including shading

and texture information) of the user’s hand. For example
[12] uses a model built only from quadratics while in [4]
both texture and lighting are used. To form the error function
the 3D model may be projected down or the image features
may be projected up. The minimisation may lead to one or
to several hypotheses. Finally sometimes the hand motion
dynamics are used, therefore predicting the pose of the next
frame from the poses at the current frame and previous
frames.

Appearance-based algorithms propose to learn a direct
mapping between image features and pose, so only two
steps are required when a new frame is presented: extract
the image features and obtain the pose from the feature–
pose mapping. These methods need no initialisation and are
(theoretically) faster, because most of the processing effort is
put into offline training, rather than in the online phase. The
mapping between feature and pose can either be learnt inside
a database in [1], by using a tree-based filter in [12] or via
a Relevance Vector Machine in [3]. These methods, while
maybe producing good results in a controlled environment
where the segmentation is very good, do not perform well
in real-world scenarios.

Our visual tracker is model and region based: we use
simple 3D meshes as models (so no texture or lighting
information) and a region based energy function. This energy
function uses the implicit representation of the contour of
the projection of the known 3D model, by embedding it
inside a level set function. We maximise the posterior per-
pixel probability of foreground and background membership
as a function of pose, directly, bypassing any separate
segmentation phase. We represent the region statistics by
variable bin size, colour histograms and adapt these online.
Since we are using only the silhouette of the projection, the
energy function will be multimodal. To help deal with the
ambiguities, we place an accelerometer on the hand.

The remainder of this article is structured as follows: in
Section II we present the 3D tracker, in Section IV we
detail the way in which we extract the orientation from the
accelerometer and correlate it with the tracker and in Section
V we show various results. We conclude in Section VI.

II. 3D TRACKER

This section presents the details of our 3D tracker, similar
to the one published in [11]. Here we review that work,
then in subsections II-D, II-E and II-F we describe several
improvements. We first set up the notation. We then show our

3D model and detail the tracking algorithm and the region
statistics.

A. Notation

Fig. 1. Notation – the contour around the visible part of the 3D model
(green) and its corresponding projection C (red), the foreground region
Ω f and the background region Ωb, a 2D point x on the contour and its
corresponding 3D point in the object coordinate frame, X

Let the image be denoted by I, and the image domain by
Ω⊂R2 with the area element dΩ. An image pixel x = [x,y]
has a corresponding image value I(x)= y (in our experiments
a RGB value), a corresponding 3D point X = [X ,Y,Z]T =
RX0 +T ∈ R3 in the camera coordinate frame and a point
X0 = [X0,Y0,Z0]

T ∈R3 in the object coordinate frame. R and
T are the rotation matrix and translation vector representing
the unknown pose and are parametrised by 7 parameters (4
for rotation and 3 for translation), denoted by λi.

We assume the intrinsic parameters of the camera to be
known. Let (fu, fv) be the focal length and (uo,vo) the
principal point of the camera.

The contour around the visible part of the object in 3D
(marked with green in Figure 1) projects to the contour C
in the image (marked with red). We embed C in the zero
level-set function Φ(x). The contour C also segments the
image into two disjoint regions: foreground denoted by Ω f
and background denoted by Ωb. Each region has its own
statistical appearance model P(y|M),M ∈ {M f ,Mb}.

Finally, by He(x) we denote the smoothed Heaviside step
function and by δe(x) the smoothed Dirac delta function.

B. 3D Model

As stated in the introduction, we use 3D triangle meshes
as models for the tracker. Figure 2 shows the 3D model we
employed throughout this paper. This model was obtained
by combining several pictures of the hand using iModeller
3D [6], into a coherent 3D model. Note we only use a rough
approximation of the hand. Our algorithm does not need the
model to be very accurate in order to produce good results.
However, the error in the recovered pose is proportional to
the difference between the model and the tracked object.

C. Tracking

The algorithm used for tracking in this work is similar
to the PWP3D algorithm of [11], whose biggest advantage

Fig. 2. 3D Model

is its robustness to motion blur, occlusions and cluttered
background. The main differences are the different formu-
lations for the region statistics (using temporal consistency
and variable bin size histograms) and their online adaptation.

PWP3D maximises the log (posterior) probability of the
shape of the contour (of the projection of the 3D model),
encoded by an embedding function Φ, given the image data:

P(Φ|Ω) = ∏
x∈Ω

(
He(Φ)Pf +

(
1−He(Φ)

)
Pb

)
⇒ (1)

E(Φ) =− ∑
x∈Ω

log
(

He(Φ)Pf +
(
1−He(Φ)Pb

))
(2)

where Pf and Pb are the posterior probabilities respectively:

Pf =
P(y|M f)

η f P(y|M f)+ηbP(y|Mb)
(3)

Pb =
P(y|Mb)

η f P(y|M f)+ηbP(y|Mb)
(4)

with η f and ηb being the areas of the foreground and
background regions respectively:

η f = ∑
x∈Ω

He
(
Φ(x)

)
ηb = ∑

x∈Ω

1−He
(
Φ(x)

)
(5)

We differentiate this energy function with respect to λi:

∂E
∂λi

= P(Φ|Ω) ∑
x∈Ω

Pf −Pb

He(Φ)Pf +
(
1−He(Φ)

)
Pb

∂He(Φ)

∂λi
(6)

∂He
(
Φ(x,y)

)
∂λi

=
∂He

∂Φ

(
∂Φ

∂x
∂x
∂λi

+
∂Φ

∂y
∂y
∂λi

)
(7)

Every 2D point on the contour of the projection of the 3D
model has at least one corresponding 3D point X, for which:

[
x
y

]
=


− fu

X
Z
−u0

− fv
Y
Z
− v0

 (8)

Therefore:

∂x
∂λi

=− fu
∂

∂λi

X
Z
=− fu

1
Z2

(
Z

∂X
∂λi
−X

∂Z
∂λi

)
(9)

The differential ∂y
∂λi

is analogue to ∂x
∂λi

while ∂X
∂λi

, ∂Y
∂λi

and
∂Z
∂λi

follow trivially by differentiating X = RX0 + T with
respect to λi. For more details the reader is refereed to [11].

D. Temporal Consistency

The probability of a pixel being foreground or background
should not change instantly i.e. if a pixel was foreground at
time t− 1, the probability of it being foreground at time t
should be higher than the probability of it being background.
This can be written formally, using a recursive Bayes filter:

P(Mt
j|Yt) =

P(yt |Mt
j,Yt−1)P(Mt

j|Yt−1)

P(yt |Yt−1)
(10)

where M j, j ∈ { f ,b} is the foreground/background model,
yt the value of pixel y at time t and Yt = [yt ,yt−1, . . .] the
values of pixel y up to time t.

Assuming conditional independence we can write:

P(Mt
j|Yt) =

P(yt |Mt
j)P(M

t
j|Yt−1)

P(yt |Yt−1)
=

=
P(yt |Mt

j)∑i∈{ f ,b}
(

p(Mt
i |M

t−1
i)p(Mt−1

i |Yt−1)
)

P(yt |Yt−1)
(11)

where:

P(yt |Yt−1) = ∑
i∈{ f ,b}

P(yt |Mt
i)P(M

t
i |Yt−1) (12)

The recursion is initialised by P(M0) = P(M j).
To estimate the per pixel values for P(Mt

f |M
t−1
f) and

P(Mt
b|M

t−1
b) we define two classes of pixels γ f and γb rep-

resenting the unchanged (between the previous and current
frame) foreground and background pixels respectively. The
following posteriors can be obtained:

P(Mt
f |Mt−1

f) =P(γ f |yt ,yt−1) = P(yt ,yt−1|γ f)P(γ f) =

=P(yt |M f)P(yt−1|M f)P(γ f)

P(Mt
b|Mt−1

b) =P(γb|yt ,yt−1) = P(yt ,yt−1|γb)P(γb) =

=P(yt |Mb)P(yt−1|Mb)P(γb)

(13)

with

P(γ f) =
ζ f

ζ
P(ζb) =

ζb

ζ
(14)

where ζ is the total number of pixels in the image, ζi,
i ∈ { f ,b} is the number of pixels that didn’t change type
between the previous and current frames i.e. had proba-
bility of foreground/background bigger than that of back-
ground/foreground and the pixel colour didn’t change by
more than a fixed threshold.

Here we only consider Yt = yt , which means that the
current value the foreground/background posterior depends
only on the value at the previous time step.

E. Variable Bin Size Histograms

In [11] and [2] the authors use a standard appearance
model consisting of two 32 bin histograms (one for fore-
ground and one for background).

We have empirically observed that the dynamic response
of the sort of consumer grade webcams is such that bright
colours will have a higher variance to changing lighting
conditions than dark colours. Standard histograms use the
same number of bins for both bright and dark colours, which
leads to undersampling for dark colours and oversampling
for bright colours. Put differently, if we build the histogram
of an object of bright constant colour, under uneven lighting
conditions, rather than having a single peak, the histogram
will tend to flatten. If the object is dark we will end up having
a single peak inside the histogram, when it should actually
be flatter. One solution to this problem would be to separate
brightness from colour, by using a different colour space
(HSV, HSL, etc.). This would imply an extra processing step
and these colour spaces have singularities at dark colours.

Our solution is to keep using the RGB colour space, but
vary the number of bins in the histogram, according to the
brightness of the pixel: bright colours will use fewer bins
while dark colours use more bins. In our implementation we
use 4 histograms (of 8, 16, 32, 64 bins per channel).

F. Online Adaptation

In [11] the authors updated the histogram only when the
minimisation of the energy function had converged. This
does not guarantee that the histograms will not be corrupted,
because the minimisation of the energy function might have
converged to an incorrect pose. Here we use the distance
transform as a measure of contour uncertainty: points that
are far from the contour, and inside the projection will most
likely be foreground, while pixels far from the contour and
outside the projection will most likely be background. We
evaluate the distance transform in a band around the contour
so we update the foreground histogram only with the pixels
outside the band but inside the contour and the background
one with pixels outside the band and outside the contour.
This might mean that we do not update with some pixels
that actually are foreground / background but it allows us to
use much higher adaptation rates while still ensuring stable
tracking. In [11] the adaptation rate was usually less than 1%.
Here we can easily go as high as 5% learning rate without the
histograms getting corrupted. This allows more rapid changes
in appearance which in turn produces more reliable tracking.

III. IMPLEMENTATION AND TIMINGS

To be useful in real-world applications, a 3D hand tracker
has to work in real time. To this end we used a highly-
parallel GPU implementation similar to that of [11]. The
energy function from Equation 2 is minimised using gradient
descent, for expedience and ease of implementation. Each
gradient descent iteration proceeds as follows:
• The 3D model is rendered using the current estimate of

the pose.

• The contour of the rendering and its exact signed
distance transform are computed.

• The partial derivatives of the energy function with
respect to the pose parameters are calculated.

• A step change is made, in the direction of the gradient.
The step size is fixed.

In [11] the authors parallelised everything except the 3D
rendering step. This ended up being the bottleneck in their
implementation, because the rendering and transfer to the
GPU operations took as much as the rest of the processing
(distance transform and energy function evaluation). An
OpenGL based implementation would have actually been
slower (at least for models with few triangles) [11].

Here we developed our own NVIDIA CUDA-based 3D
rendering engine. We chose to use a separate thread for each
triangle in the model. For the ZBuffer implementation we use
global memory write atomic operations to avoid any possible
read-write-modify hazard. As a result we are able to achieve
speeds of 2-3ms per iteration (compared to 4-6 in [11]).
Reliable tracking can be done at 15-20 frames per second
when running a fixed number of iterations. Convergence is
usually faster than the fixed number of iterations so the speed
increases to 20-25 frames per second when checking for
convergence. In this paper we used a NVIDIA GTX 285
video card and an Intel Xeon E5420 CPU.

IV. ACCELEROMETER

Fig. 3. Silhouette - Pose ambiguities

The function mapping silhouette to pose is multimodal:
very different poses will end up generating the very similar
silhouettes, as shown in Figure 3. One solution to overcome
this problem would be to consider multiple hypotheses at
every frame (i.e. use a particle filter). This would make
real time performance difficult to achieve. Our solution is
to augment the 3D tracker with data from a simple off-the-
shelf accelerometer, mounted on the hand. In this section we
present our method of extracting data from the accelerometer
and of calibrating the accelerometer and tracker.

A. Extracting Hand Orientation from the Accelerometer

We use the Freescale ZSTAR3 kit, consisting of a sensor
board and an USB dongle. The sensor board is mounted on
the top of the hand (Figure 4) or on the palm of the hand,
and it transmits acceleration data to the USB dongle.

Most works (for example [5]) extract the orientation from
the accelerometer by computing three Euler angles, pitch
(denoted with ρ), roll (denoted with φ) and the angle of the
Z axis relative to the gravity) (denoted with θ). Note that yaw
cannot be measured, because a change in yaw does not alter

Fig. 4. Hand with accelerometer sensor board

the gravity measurements of the accelerometer. Therefore:

ρ = arctan Ax√
A2

y+A2
z

φ = arctan Ay√
A2

x+A2
z

θ = arctan
√

A2
x+A2

y
Az

(15)

The problem with this approach is that it suffers from
gimbal lock. Our solution was to use the axis-angle represen-
tation for rotation, by interpreting the acceleration data from
the accelerometer as a (normalised) force vector. Assuming
a preset reference r, the accelerometer force vector a, θ the
axis and Θ the angle, we can write:

Ω = a× r θ = arccos(a · r) (16)

We always define the reference as the acceleration vector at
the previous frame, which means we use the accelerometer
to measure rotation between consecutive frames.

B. Accelerometer - Tracker Calibration

Fig. 5. Rotation quaternions and coordinate systems for the tracker and
the accelerometer

Both the 3D tracker and accelerometer produce rotation
quaternions, in the reference coordinate system (which in our
case is the camera coordinate system). The accelerometer can
be positioned in many ways on the hand which means that the
two quaternions will generally be different. The difference
will be constant because the accelerometer does not move
with respect to the hand. The calibration process attempts
to recover this difference, i.e. the quaternion that rotates
the accelerometer coordinate system into that of the tracker.
Figure 5 shows the definitions of the coordinate systems:
qa is the rotation quaternion of the accelerometer, in the
world coordinate system, qp is the rotation quaternion of
the tracker, in the world coordinate system and qap is the
quaternion which rotates one into the other:

qaqap = qp (17)

and tk and tk+1 are the frames at the current and next time
step.

We assume that there is no translation difference between
the tracker and accelerometer coordinate systems. While this
might not be true all the time, the differences will be small
and the tracker is iterated after it is combined with the
accelerometer data, so any errors will be compensated there.

Several visual-inertial calibration methods exist. Generally
this problem is solved as one of linear or nonlinear least
squares [7], [9]. For example in [9] the authors start from
the fact that qap should be constant and minimise:

qpa = argmax
q
{qT
(t

∑
i=1

QT
∆qa(t)Q∆qp(t)

)
q} (18)

where qpa = q−1
ap , Q and Q are the matrix representations of

∆qa and ∆qp, and:

∆qp = q−1
p (t1)qp(t2) ∆qa = q−1

a (t1)qa(t2) (19)

Our solution assumes the user moves the hand in a
predefined pattern (up, down, left, right), to pass through the
entire range of valid accelerometer values. We compute qap
at every frame and then the eigenvectors of the covariance
matrix built by stacking together all the qap values. Since
eigenvectors norm to 1, all eigenvectors will be valid quater-
nions. The calibrated quaternion, relating qp to qa, is then the
eigenvector with the maximum eigenvalue i.e. the one that
maximises the variance among all the values of qap. This
process could also be seen as running Principal Component
Analysis (PCA) on the quaternion dataset.

Least squares based methods and PCA assume all data
points to be i.i.d. and corrupted by i.i.d. noise. However the
noise in our case is not i.i.d. A quaternion describes a single
rotation, making the quaternion parameters interlinked. The
noise in the quaternion parameters can therefore be approx-
imated more accurately by spherical noise. Therefore in this
work, rather than running PCA on the quaternion dataset we
run Probabilistic PCA [14], which considers noise as being
spherical Gaussian.

C. Accelerometer - Tracker Integration

Ideally we would operate with visual data alone, but for
the reasons we have already discussed, a limited amount
of additional information such as that provided by a cheap
accelerometer can resolve visual ambiguities. Here we have
taken an expedient route that uses the accelerometer data to
aid the starting point for the visual tracker iterations; this
increases the speed and reliability of convergence of the
visual tracker as well as overcoming many of the visually
ambiguous poses, but places little faith on the actual output
of the accelerometer (in line with our expectation that overall
it is not especially reliable). More specifically, we begin with
the previous pose estimate from the visual tracker, update it
with the differential motion obtained from the accelerometer,
and use this as the starting point for the visual tracker’s
iterations. We have found that the differential output of the
accelerometer is aided by filtering the raw acceleration data
prior to computing the change in motion. We do this with a
Kalman Filter that assumes the acceleration is constant.

V. RESULTS

In this section we present the results of applying our
algorithm to a multitude of video sequences. We also show
the benefits brought by of each part of the algorithm (using
the accelerometer, using the variable bin size histograms,

imposing temporal consistency for the posteriors). We then
compare our calibration method to the standard least-squares
approach of [9]. Finally we detail a proof-of-concept user
interface based on our 3D tracker.

With Figure 6, we begin by showing an example where the
accelerometer helps resolve the silhouette - pose ambiguities,
making tracking more reliable and accurate. In this example
the hand was moving up - down and then left - right, very
quickly. The figure also shows our system working in a
cluttered environment. Each motion took up to 5 frames at
30 fps video (so 1/6 seconds), followed by a short (around
60 frames) period of stability. We allowed a fixed number
of iterations at each frame. For the first frame, where there
are no ambiguities, the results are similar, with and without
the accelerometer. At the second frame it can already be
seen that the visual tracker alone is showing some error in
the recovered pose. This is happening because the visual
tracker does not have time to converge. The accelerometer
helps it by recovering most of the rotation, allowing it to
converge to a much more accurate pose. At the next frame
the pose recovered by the visual tracker is very far from the
correct hand pose. The straight on view of the hand is an
ambiguous pose i.e. a change in hand rotation will not alter
the silhouette. The visual tracker was already in the wrong
position at the previous frame and when the hand came out
of the ambiguous pose, the difference in rotation between
the pose known by the tracker and the correct pose was at
least 20 degrees. The accelerometer helped deal with the
ambiguities. The same behaviour can be noticed in the left -
right rotation (next 4 frames). The visual tracker alone can’t
deal with the ambiguities in the silhouette - pose function
and with the high speed of the motion.

Next we show the usefulness of variable bin size his-
tograms and temporal consistency for the posteriors. In
Figure 7 we plot Pf −Pb where Pf −Pb > 0 with Pf and Pb
defined according to Equations 3 and 4. This is a measure
of how effective the regions statistics are at separating
foreground from background. Figure 7 shows an extreme
case where the variable bin size histograms help exclude
pixels from the foreground and achieve better pose tracking
results. When using fixed bin size histograms a lot of the
shadow of the hand on the table ends up being considered
foreground. Adding temporal consistency to the posteriors
improves the results further. Note that we do not use any
kind of background subtraction in any of our tests.

In Figure 8 we compare our calibration method against
the one of [9]. Our method is probabilistic (we use prob-
abilistic PCA to compute the calibration quaternion) while
the one presented in [9] uses least squares. We start with
two rotations over 500 frames which produce two sets of
500 quaternions q1(t) and q2(t). The offset between the
two rotations is constant and known. We apply uniformly
distributed random noise, at each frame and on each axis,
within the [−5,5] degree range. We use both methods to
recover the offset between the two rotations qc, where
q2(t) = q1(t)qc. At this noise level both method yield similar
results. We then add a secondary source of noise, a uniformly

Fig. 6. Filmstrip showing tracking results with and without the accelerometer. The visual tracker alone cannot deal with ambiguities in the silhouette
(where a change in pose does not alter the silhouette). The accelerometer provides enough information to discriminate between the ambiguous poses.

distributed random noise, at every 60th frame and on each
axis, within the [−30,30] degree range. At this noise level
our method can successfully obtain qc while the method of
[9] fails.

In Figures 10 and 11 we show filmstrips from two proof-
of-concept examples of how our hand tracker could be used
as part of a human-computer interface. The user first has to
mark a plane. Here marking the plane is done by moving the
hand along the edges of a rectangular board (Figure 9). The
board (or its colour) does not influence the hand tracking in
any way. We chose this shape as a visual cue to the user and
because it provides an easy and structured way of displaying
information. The motion made by the user could have been
different (i.e. a circle). The plane does not need to lie on a
real surface i.e. it could have been marked in mid air. In order
to extract the plane position we used RANSAC on the 3D
positions of the tip of the index finger (which we computed
using the pose of the entire hand and the 3D model). Once
the user has marked the plane, the user is able to “click”
the virtual surface. A click is signalled when this distance
between the tip of the index finger and the plane is 0 or
negative. We display a menu interface on the virtual surface,
which the user navigates by clicking. The UI is displayed
on the computer screen but could also be projected on the
board or shown through a pair of AR glasses.

In the first example (Figure 10) the user is first prompted
to place a DVD on the marked surface. We used two video
game DVDs as examples. The system identifies the DVD
and displays relevant information on the virtual surface.
Recognition is achieved by using the TinEye API [13] and
the information is extracted from sources such as Amazon
and Wikipedia. Depending on the DVD placed on the virtual
surface the user is also shown a 3D object. In the case of the

first DVD the user is shown a model of the main starship
from the game. In the case of the second DVD the user is
shown the model of planet Mars. The user can interact with
the 3D object. In the case of the first DVD the user can place
the hand under the starship which then “climbs” on top of
the hand. The user can move the ship by moving the hand.
In the case of the second DVD the user can rotate the model
of planet Mars by moving the hand.

In the second example (Figure 11) the user first draws a
2D closed shape on the virtual surface. The 2D shape can be
turned into a 3D object by clicking it and raising the hand
above the virtual surface. Just like in the previous example,
the user can also move the 3D object by placing the hand
under it and waiting for it to “climb” on top of the hand.

VI. CONCLUSIONS

In this article we proposed a system for real-time 3D
human computer interaction, via the use of 3D hand tracker.
Our system does not need specially coloured gloves or
markers and can work in cluttered environments. It combines
a region based visual tracker with a a single off-the-shelf
accelerometer, making it robust to motion blur and occlu-
sions while allowing it to differentiate between ambiguous
hand poses. Variable bin size histograms and temporal con-
sistency for the foreground/background membership proba-
bilities help improve the foreground/background separation
when subjected it changing lighting conditions.

A straightforward extensional to our work is the ability
to track multiple hands, from multiple cameras. A more
compelling extension would be the ability to track the 3D
pose of individual fingers, along with that of the full hand.
In our ongoing research we are looking at combining our
tracker with a prelearned appearance-based mapping between

Fig. 7. Filmstrip showing the per pixel difference between the foreground and background probabilities Pf −Pb, where Pf −Pb > 0, and the resulting
recovered pose, when using fixed bin size histograms (rows 2 and 3), variable bin size histograms (rows 4 and 5) and variable bin size histogram combined
with temporal consistency (rows 6 and 7).

silhouette and pose, which would make 3D articulated track-
ing tractable.

REFERENCES

[1] V. Athitsos and S. Sclaroff. Estimating 3d hand pose from a cluttered
image. In CVPR 2003, pages II–432–9 vol.2, 2003.

[2] C. Bibby and I. Reid. Robust real-time visual tracking using pixel-wise
posteriors. In ECCV 2008, pages 831–844, 2008.

[3] T. E. de Campos and D. W. Murray. Regression-based hand pose
estimation from multiple cameras. CVPR 2006, 1:782–789, 2006.

[4] M. de La Gorce, N. Paragios, and D. J. Fleet. Model-based hand
tracking with texture, shading and self-occlusions. CVPR 2008, 0:1–
8, 2008.

[5] Freescale. Tilt sensing using linear accelerometers, an3461.
[6] U. GmbH. imodeller 3d professional. 2009.
[7] J. D. Hol, T. B. Schön, and F. Gustafsson. Modeling and calibration

of inertial and vision sensors. IJRR, 29(2-3):231–244, 2010.

[8] M. Inc. Shapehand data glove, 2009.
[9] P. Lang and A. Pinz. Calibration of hybrid vision / inertial tracking

systems. In InverVis 2005, April 2005.
[10] V. I. Pavlovic, R. Sharma, and T. S. Huang. Visual interpretation

of hand gestures for human-computer interaction: A review. IEEE
T-PAMI, 19(7):677–695, 1997.

[11] V. Prisacariu and I. Reid. Pwp3d: Real-time segmentation and tracking
of 3d objects. In BMVC 2009, September 2009.

[12] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla. Model-
based hand tracking using a hierarchical bayesian filter. IEEE T-PAMI,
28:1372–1384, 2006.

[13] TinEye. Tineye commercial api http://www.tineye.com, 2010.
[14] M. E. Tipping and C. M. Bishop. Probabilistic principal component

analysis. JRSS, 61:611–622, 1999.
[15] R. Y. Wang and J. Popović. Real-time Hand-tracking with a Color

Glove. ACM TOG, 28(3), 2009.

0 100 200 300 400 500

0

0.5

1

q
1
 − ground truth

0 100 200 300 400 500

0

0.5

1

q
2
 − ground truth

0 100 200 300 400 500

0

0.5

1

q
1
, noise in [−5, 5] degrees , every frame

0 100 200 300 400 500

0

0.5

1

q
2
, noise in [−5, 5] degrees , every frame

0 100 200 300 400 500

0

0.5

1

quaterion calibration error, our method
noise in [−5, 5] degrees, every frame

0 100 200 300 400 500

0

0.5

1

quaterion calibration error, using [9]
noise in [−5, 5] degrees, every frame

0 100 200 300 400 500

0

0.5

1

q
1
, noise in [−5, 5] degrees, every frame

and in [−30, 30] degrees, every 60 frames

0 100 200 300 400 500

0

0.5

1

q
2
, noise in [−5, 5] degrees, every frame

and in [−30, 30] degrees, every 60 frames

0 100 200 300 400 500

0

0.5

1

quaterion calibration error, our method
noise in [−5, 5] degrees, every frame

and in [−30, 30] degrees, every 60 frames

0 100 200 300 400 500

0

0.5

1

quaterion calibration error, using [9]
noise in [−5, 5] degrees, every frame

and in [−30, 30] degrees, every 60 frames

Fig. 8. Charts comparing our calibration method to the one from [9]. We use two motions (denoted with q1 and q2) over 500 frames as our ground truth.
The calibration quaternion between these two is known and constant. We first add a small amount of noise noise at each frame (a randomly size angle,
between -5 and 5 degrees, at every frame) and compute the calibration quaternion using the two methods. Both methods are able to recover the calibration
quaternion. We then keep this source of noise and add another, bigger, one every 60 frames (a randomly sized angle, between -30 and 30 degrees). Our
method is still able to compute the correct calibration quaternion, while the one from [9] fails.

Fig. 9. Example human-computer interface based on our tracker – the user first marks a plane by moving the hand along the edges of the board.

Fig. 10. Example human-computer interface based on our tracker – the user places a DVD on the surface, prompting the system to show facts about the
DVD and a 3D object related to it, which he/she can manipulate with the hand. In the case of the first DVD the user sees and can be pick up and move a
3D model of a starship. In the case of the second DVD, the user sees and can rotate a model of planet Mars.

Fig. 11. Example human-computer interface based on our tracker – the user can click and draw on the 2D surface. He/she can transform the 2D contour
into a 3D object by clicking inside the contour and lifting the hand. The user can also pick up and move the object.

